

<u>George Dedes</u>^a, Ludovica De Angelis^a, Simon Rit^b, David Hansen^c, Claus Belka^d, Vladimir Bashkirov^e,Robert Johnson^f George Coutrakon^g, Keith Schubert^h, Reinhard Schulte^e, Katia Parodi^a, Guillaume Landry^a

a Ludwig-Maximilians-Universität München, Department of Medical Physics b Université de Lyon 1, CREATIS, CNRS, INSA Lyon c Aarhus University Hospital, Department of Oncology d LMU Munich, Department of Radiation Oncology, Munich, e Loma Linda University, Division of Radiation Research f U.C. Santa Cruz, Department of Physics g Northern Illinois University, Department of Physics h Baylor University, School of Engineering and Computer Science

MCMA 2017, 17th of October, Naples, Italy

Outline

Motivation

• Materials and Methods

Results

Conclusion

Motivation

- Proton imaging:
 - Proposed already in 1960s by Cormack
 - Registering proton position and direction before and after object and residual energy/range after object
 - > Relative stopping power to water (RSP) determination at low imaging dose
 - Renewed interest with the spread of particle therapy facilities
 - > Potential clinical use: treatment planning, positioning, plan adaptation/replanning

Motivation

- Proton imaging:
 - Proposed already in 1960s by Cormack
 - Registering proton position and direction before and after object and residual energy/range after object
 - > Relative stopping power to water (RSP) determination at low imaging dose
 - Renewed interest with the spread of particle therapy facilities
 - > Potential clinical use: treatment planning, positioning, plan adaptation/replanning
- Dose reduction technique in X-ray CT:
 - Bow-tie filters
 - Automatic exposure control
 - Modulation of X-ray beam within a fan beam
 (Bartolac et al, 2011, Med. Phys. 38 S2), (Szczykutowicz et al, 2015, Phys. Med. Biol, 60 7245-57)

Motivation

- Proton imaging:
 - Proposed already in 1960s by Cormack
 - Registering proton position and direction before and after object and residual energy/range after object
 - > Relative stopping power to water (RSP) determination at low imaging dose
 - Renewed interest with the spread of particle therapy facilities
 - > Potential clinical use: treatment planning, positioning, plan adaptation/replanning
- Dose reduction technique in X-ray CT:
 - Bow-tie filters
 - Automatic exposure control
 - Modulation of X-ray beam within a fan beam
 (Bartolac et al, 2011, Med. Phys. 38 S2), (Szczykutowicz et al, 2015, Phys. Med. Biol, 60 7245-57)
- Fluence modulated proton CT (FMpCT)
 - Extension of the main concept to proton CT acquired with pencil beams (Dedes et al, 2017, Phys. Med. Biol., 62 6026)

- Simulation platform:
 - Geant4 v10.01.p02
 - Ideal pCT scanner

(two detection planes registering energy, position and direction of individual protons)

- Proton CT reconstruction:
 - Filtered backprojection along curved paths (Rit et al 2013 Med. Phys. 40 031103)

- Simulation platform:
 - Geant4 v10.01.p02
 - Ideal pCT scanner

(two detection planes registering energy, position and direction of individual protons)

- Proton CT reconstruction:
 - Filtered backprojection along curved paths (Rit et al 2013 Med. Phys. 40 031103)
- Virtual phantoms:
 - CT scan of a patient (Pat1) with a brain metastasis located near the base of the skull

- Simulation platform:
 - Geant4 v10.01.p02
 - Ideal pCT scanner

(two detection planes registering energy, position and direction of individual protons)

- Proton CT reconstruction:
 - Filtered backprojection along curved paths (Rit et al 2013 Med. Phys. 40 031103)
- Virtual phantoms:
 - CT scan of a patient (Pat1) with a brain metastasis located near the base of the skull
 - CT scan of a paranasal sinus cancer (Pat2)

- Experimental data:
 - Phase II preclinical prototype pCT scanner
 (Sadrozinski et al 2016 Nucl. Instrum. Methods Phys. Res. A 831 394–9)

Sadrozinski et al, Nucl Instrum Methods Phys Res A, 831 21 2016, 394–399

- Experimental data:
 - Phase II preclinical prototype pCT scanner
 (Sadrozinski et al 2016 Nucl. Instrum. Methods Phys. Res. A 831 394–9)
 - Pediatric head phantom (715-HN, CIRS)

Adapted from Giacometti et al Phys Med. 2017 Jan;33:182-188

- Fluence modulation on simulated pencil (PB) scans:
 - Full fluence uniform images (FF), uniform images with a fluence reduced by a fluence modulation factor (FMF·FF)
 - > FMpCT with PBs intersecting ROI retaining FF and PBs outside reduced at FMF·FF

- Fluence modulation on simulated pencil (PB) scans:
 - Full fluence uniform images (FF), uniform images with a fluence reduced by a fluence modulation factor (FMF·FF)
 - FMpCT with PBs intersecting ROI retaining FF and PBs outside reduced at FMF·FF

- Fluence modulation on experimental cone beam scans:
 - Full fluence uniform images (FF), uniform images in which individual protons are discarded with a probability of 1-FMF
 - FMpCT with individual protons intersecting ROI retaining FF and protons outside discarded with a probability of 1-FMF

Results: Pat1

Fluence modulation on simulated pencil (PB) scans: Image quality

Results: Pat1

Fluence modulation on simulated pencil (PB) scans: Image quality

Pat1	TOBE		mean		
	Uniform	FMpCT	Uniform	FMpCT	
FF	1.8		-0.1	_	
$0.1 \cdot FF$	5.5	1.8	-0.1	-0.2	
0.05 · FF	8.3	1.8	-0.2	-0.2	
0.01 · FF	30.1	1.9	0.6	-0.7	

Fluence modulation on simulated pencil (PB) scans: Image quality

• Fluence modulation on simulated pencil (PB) scans: Image quality

(DCD

DCD

(07)

DCD

VDCD

(07)

Pat2	$\frac{(RSP - RSP_{ref})/RSP_{ref}(\%)}{Noise}$		$\frac{(RSP - RSP_{ref})/RSP_{ref}(\%)}{Mean}$	
	FF	1.4	_	-0.2
$0.1 \cdot FF$	4.2	1.5	-0.2	-0.2
$0.05 \cdot FF$	6.3	1.6	-0.2	-0.2
0.01 · FF	32.5	1.6	0.5	-0.4

0.1 · FMpCT

0.05 · FMpCT

0.01 · FMpCT

1.42

1.35

1.30

1.25

1.18

1.12

0.51

0.54

0.56

0.45

0.47

0.49

Results: Pat1 & Pat2

• Fluence modulation on simulated pencil (PB) scans: Dose calculation

Results: Pat1 & Pat2

Fluence modulation on simulated pencil (PB) scans: Dose calculation

Results: Pat1 & Pat2

• Fluence modulation on simulated pencil (PB) scans: Range calculation

	RD < 1 mm (%)		RD < 2mm(%)	
Pat1	Uniform	FMpCT	Uniform	FMpCT
FF – RSP _{ref}	93	_	99	_
$0.05 \cdot FF - FF$	88	99	99	99
$0.01 \cdot FF - FF$	0	97	0	99

Results: Pediatric head phantom

• Fluence modulation on experimental cone beam scans : Image quality

• Fluence modulation on experimental cone beam scans : Image quality

Conclusions - Outlook

- Demonstration of the concept in homogeneous and anthropomorphic virtual phantoms
 - Dose reduction
 - Retaining of image quality
 - Accurate images for dose calculation
- Successful emulation of FMpCT from cone beam pCT experimental scans

Conclusions - Outlook

- Demonstration of the concept in homogeneous and anthropomorphic virtual phantoms
 - Dose reduction
 - Retaining of image quality
 - Accurate images for dose calculation
- Successful emulation of FMpCT from cone beam pCT experimental scans
- Performing similar studies with a detailed modelling of the scanner
- Full experimental realization of the technique in a proton therapy facility
 - PB pCT scans (by the end of the year)
 - Testing of modulation patterns
 - Image quality prescription algorithms

• Available PhD position on fluence modulation pCT in LMU Munich:

LUDWIG- MAXIMILIANS- UNIVERSITÄT MÖRCHEN $E' = \frac{E}{1 + \frac{E}{m_c s^2} (1 - \cos\theta)}$	FACULTY OF PHYSICS CHAIR OF EXPERIMENTAL PHYSICS MEDICAL PHYSICS $-\frac{dE}{dx} = \kappa \rho \frac{Z}{A} \frac{z^2}{z^2} \left[\ln(\frac{2m_e \sigma^2 + T_{max}}{l^2}) - 2\beta^2 - \delta - 2\frac{\sigma}{Z} \right]$			
Google™ Custom Search Q	www.en.Imu.de LMU Munich Physics Home LMU-Portal Sitemap			
Startseite > Open Positions > PhD position open for the DFG-Funde	Research Project "Fluence modulated proton computed tomography: a new approach for low-dose image guidance in particle therapy"			
LATEST NEWS	· Recomputer Snip	rint		
RESEARCH TOPICS	PhD position open for the DFG-Funded Research Project "Fluence			
PEOPLE	modulated proton computed tomography: a new approach for low-dose			
OPEN POSITIONS	image guidance in particle therapy			
PhD positions open within the new DFG-Funded Research Training Group GRK 2274	06.10.2017 - 30.11.2017 In the framework of the new project "Fluence modulated proton computed tomography: a new approach for low-dose			
PhD position open for the DFG-Funded Research Project "Fluence modulated proton computed tomography: a new approach for low-dose image guidance in particle therapy"	image guidance in particle therapy", funded by the German Research Foundation (DFG), grant No 88731804, we invite applications for 1 PhD position (36 months) at the LMU Chair of Medical Physics <u>Please find more information and contact data in the annoucement.</u>			

https://www.med.physik.uni-muenchen.de/open_positions/dfg_fmpct/index.html